Today’s road projects require contractors to work faster, with better accuracy, and with tighter control on costs. For the paving contractor, that means no unplanned downtime, minimal material usage, and zero re-work.

Trimble® paving solutions are designed for today’s competitive environment. Whether you are building a new road or resurfacing an old one, Trimble solutions will help you build a better surface, reduce material use, and significantly improve your productivity. The more you use Trimble paving solutions, the more productive and profitable your paving operation will be.

Resurfacing an Old Road:

- **Topo**
 - Site Positioning Systems

- **Design & Take-off**
 - Business Center – HCE

- **Mill**
 - PCS900 Paving Control System

- **Supervise**
 - Site Positioning Systems

Building a New Road:

- **Topo**
 - Site Positioning Systems

- **Design & Take-off**
 - Business Center – HCE

- **Grade & Compact**
 - GCS900 Grade Control System

- **Supervise**
 - Site Positioning Systems
Trimble offers road building solutions from concept to completion; from the initial design to the last pass of the asphalt compactor. Using Business Center – Heavy Construction Edition, Trimble 3D technology and the VisionLink® fleet and productivity solution, you can create a better final surface, whether it is on soil or existing asphalt layers.

The best built roads begin with a quality subsurface before the paver ever starts. For new roads, start by creating a quality 3D design using Business Center – HCE software powered by Trimble. Then Trimble 3D grade control systems on your motor grader and soil compactor will help you achieve a more uniformly compacted surface that’s right on grade.

For resurfacing an old road, use Trimble 3D grade control on your milling machine to smooth out undulations and imperfections in the original surface.
MILL SMARTER

Using PCS900 on your milling machine provides several benefits:

- Smoother base—mill out the existing undulations, creating a smoother surface for paving
- Shorter lane shutdowns—trucks can run more efficiently unhindered by stringline and stakes
- Reduced machine wear—by only milling to the depth required, the machine will burn less fuel and experience less teeth wear
- Less material to remove—fewer trucks and cost required to remove waste material
- Less asphalt usage—mill off the minimum depth and use less asphalt for the final surface

3D Milling with Trimble PCS900

Milling to a fixed depth often satisfies the specification for a resurfacing project, but it leaves any road smoothness improvements to the paver. With Trimble PCS900 Paving Control System you can mill at variable depth and slope, eliminating undulations and preparing a smoother sub-surface for new asphalt. When used in conjunction with a paver equipped with PCS400 or PCS900, the end result is a significantly smoother road surface using less material and finished in less time.

Prism:
Patented Trimble active tracking technology guarantees total station lock to the on-machine target and ensures millimeter control of the milling machine drum.

CB460 Control Box:
The Trimble CB460 Control Box indicates the position of the drum versus the 3D design or pre-defined vertical offset.

Result after fixed depth milling of a road with longitudinal waves

Result after 3D milling of a road with longitudinal waves
ACCURATE MILLING. NO STRINGLINES

Accurate milling begins with a quality 3D design model created in Business Center – HCE. The 3D design is displayed to the machine operator showing areas that are on, above, or below ideal grade. Comparing the actual drum position and slope with the digital design, the system automatically guides the milling drum to cut the ideal depth and slope without stringlines or manual adjustments.

With PCS900 on your mill, you easily handle transitions, super-elevated curves, variable drainage slopes and longitudinal waves. And you can do it all without re-work.

THE TRIMBLE SPS930 UNIVERSAL TOTAL STATION IS IDEAL BECAUSE:

- **It offers the best accuracy on the market**—every millimeter saved reduces your milling and paving costs substantially. It can very accurately drive the mill drum to cut to the 3D design within 0.01 - 0.02 feet (3-6 millimeters).
- **It is flexible and reliable**—you can work on sites where there is an obstructed view of the sky.
- **It has a 45 degree tracking angle**—you can set it up very close to the mill in narrow corridors or in the drainage area between divided highways.
- **It transitions faster**—Trimble Hot Swap technology transitions to the next total station without stopping the machine.
- **It maximizes your return on investment**—other survey and machine control work can be done with the same instrument.
2D Paving with Trimble PCS400

The Trimble PCS400 system is ideal for projects that require meeting a thickness specification. When milling is done to design using Trimble 3D technology, Trimble 2D paving technology can easily handle the task of paving a fixed thickness.

The Trimble PCS400 Paving Control System can reference off a surface, stringline or cross-slope. This makes the PCS400 an excellent, lower cost option for roads that have been graded or milled using Trimble PCS900 Paving Control Systems.

MANY BENEFITS FROM ONE SYSTEM

Using the Trimble PCS400 system can help you:

- Lay the finished surface with accuracy to 0.01 feet (3 millimeters)
- Minimize use of expensive material...pave within a tighter tolerance and get closer to the minimal asphalt thickness specification
- Reduce labor costs by controlling the screed with one operator
- Eliminate operator mistakes with the easy-to-use display interface
- Achieve maximum smoothness and rideability
- Finish on time

CB440 Control Box:
The CB440 Control Box displays the measured and target values of the cross slope and mat thickness simultaneously.

ST200 Sonic Tracer:
The PCS400 Averaging Beam uses three evenly spaced ST200 Sonic Tracers to average out uneven reference surfaces.
REFERENCING OFF A SURFACE

Each side of the paver is typically equipped with one sonic tracer or with three sonic tracers mounted on an averaging beam. These sonic tracers send multiple sonic signals to reference off the existing surface and calculate an average elevation for paving a smooth surface.

REFERENCING OFF STRINGLINE

The ST200 Sonic Tracer can be configured to use stringline as a reference line to control the paver. In this mode the sonic tracer will measure any lateral movement of the machine relative to the stringline. When the sonic tracer’s center is moving away from the stringline, the control box warns you and provides correction guidance.

REFERENCING OFF THE SLOPE SENSOR

The PCS400 system can also use the Trimble AS200 Angle Sensor to reference the desired cross-slope of the road. Designed specifically for asphalt pavers, the sensor rarely needs recalibration and paves cross slopes of up to 0.5% accurately and consistently.

PCS400 AVERAGING BEAM AND SONIC TRACERS

Three ST200 Sonic Tracers mounted on the averaging beam ignore irregularities such as grates, and stones that could otherwise decrease accuracy. The beam measures a full 30 feet (9.1 meters) in length as required by some governmental agencies and swings back behind the paver to reference both the adjoining surface and freshly laid mat.

TRIMBLE CB440 CONTROL BOX

The PCS400 system features a large display and an easy-to-understand layout for controlling cross slope and material thickness. The optional split screen view on the CB440 Control Box allows you to control and monitor the left and right side of the screed with just one operator. You can even view the measured and target values of the cross slope and mat thickness simultaneously.
3D Paving with Trimble PCS900

The Trimble PCS900 Paving Control System adds the accuracy and flexibility of 3D technology and allows you to also pave with variable depth and slope based on the 3D design.

If you already have a Trimble PCS900 Paving Control System on your grading or milling machine, you can re-deploy the same display, machine target, and total station for your paver.

AVOID THE PROBLEMS OF STRINGLINE

3D technology resolves the problems inherent to stringline because:

- It eliminates time consuming and costly manual setup and possible human errors
- It eliminates the possibility that stringlines can be moved or damaged
- It improves truck productivity with less travelling and maneuvering around the stringlines

Prism:
Patented Trimble active tracking technology guarantees total station lock to the on-machine target and millimeter control of the screed.

CB460 Control Box:
The CB460 3D Control Box offers a 7 inch (18 centimeter) graphical display and adjustable light settings for day or night paving.
PRECISION PAVING WITH LESS MATERIAL

The PCS900 system regularly achieves asphalt mat accuracies of 0.01-0.02 feet (3-6 millimeters), making it ideal for projects such as airports, large commercial surfaces and highways.

Accurate 3D control of the screed allows you to:
- Take out high and low areas early in the process with the less expensive materials
- Increase road smoothness using less asphalt than with traditional paving methods
- Lay complex designs such as transitions, super-elevated curves and frequently changing cross slopes
- Achieve accuracy and smoothness specifications, which can mean bonus income

GOOD DESIGNS MAKE GOOD SURFACES

Data preparation and management for asphalt paving projects is easy with Business Center – HCE.

Using Business Center – HCE, you can create 3D design models and automatically generate uncompacted surface designs for the Trimble PCS900 3D paving system. The uncompacted surface designs guide the paver to automatically lay more material above low areas and less material in high areas, anticipating and eliminating longitudinal waves that can occur after asphalt compaction.

CB440 Control Box:
The CB440 Control Box displays the measured and target values of the cross slope and mat thickness simultaneously.

HOT SWAP TRANSITIONS:
Unique Trimble technology allows the system to hot swap, or instantly transition, to the next total station without stopping the machine to make adjustments.
target compaction in fewer passes

3D Compaction with Trimble CCS900

The asphalt compactor is the last machine to pass over your paving project, and mistakes during this phase can be very costly to fix. You can significantly reduce the need for re-work by installing the Trimble CCS900 Compaction Control System on your asphalt compactors.

The CCS900 system eliminates much of the guess work from asphalt compaction and helps achieve more consistent compaction to target design density. You will also be able to roll a more efficient pattern, increase productivity, and save fuel.

MAP IT AND GET IT RIGHT

Pass count mapping in the CCS900 system allows you to monitor the number of passes over an area and adjust your effort to avoid over or under-compaction.

Using the roof-mounted GNSS receiver or machine target, the system calculates the exact position of the machine and displays a color map indicating the current number of passes and where you have overlaps or gaps. When installed with two optional IS310 Infrared Sensors, CCS900 maps the surface temperature of the mat and pinpoints exactly where you need to be for ideal compaction timing.

CB460 or CB450 Control Box:
The Control Box graphically maps pass counts and surface temperature readings with high and low temperature warnings to indicate potential issues in real-time.
REPORTING AND DOCUMENTATION

In-field reporting and an in-cab printer allow on-site supervisors and quality managers to monitor compaction operations and correct possible issues immediately. Compaction data logs can be wirelessly transferred from the machine to the office for analysis using the web-based VisionLink fleet, asset and productivity management solution from Trimble.

MS972 GNSS Smart Antenna:
The Trimble MS972 Smart GNSS Antenna measures the position of the compactor using a base station or satellite delivered correction sources such as SBAS.

IS310 Infrared Temperature Sensors:
IS310 Infrared Temperature Sensors measure surface temperature of the mat in the direction of operation.

MONITORING COMPACTION IN VISIONLINK

For longer term analysis of compaction operations and productivity enhancements, VisionLink 3D Project Monitoring lets you:

- Continuously monitor pass counts and compaction meter values to improve testing success, reduce rework and lower ongoing maintenance costs.
- Reduce over-compaction to optimize fuel use and machine time.
- Monitor temperature maps to ensure compaction per the target temperature range.
affordable. easy to use

Pass count mapping with CCSFlex

The Trimble CCSFlex™ Compaction Control System is an easy-to-use and affordable compaction control system to help you increase your compaction efficiency in the most economical way.

Unlike CCS900 which requires a more permanent installation on the machine, the CCSFlex system is completely portable between compactors and requires no welding or drilling onto the machine. Designed specifically for compactors, CCSFlex cannot be installed on other earthmoving and paving machines.

GET STARTED QUICKLY

Straight out of the case, you can run the CCSFlex system without a GPS base station and without creating 3D designs. The highly intuitive CCSFlex software guides you to the exact number of passes required for the job and provides instant feedback on pass count and compaction quality. You simply can’t go wrong.

CB450 Control Box:
The in-cab control box provides visual guidance regarding pass count and compaction by “painting” a map in real time, showing on a color scale the number of passes over each spot.
PORTABLE SYSTEM IN A CASE

The CCSFlex “in a case” system is easy to install by the contractor in a couple of hours. This easy portability makes the system an ideal solution if you employ rented compactors or you want to move the system between compactors in your fleet. It can be installed on any asphalt compactor with open or enclosed cab.

MS972 GNSS Smart Antenna:

The MS972 provides sub-meter accurate positioning of the compactor. Position information is used to display a pass count coverage map in real time on the in-cab control box.

The Trimble CCSFlex system comes standard as a pass count system with an MS972 GNSS Smart Antenna, CB450 Control Box, moveable mounting brackets, and system cables.

VisionLink

VisionLink 3D Project Monitoring allows you to monitor pass counts and improve your compaction operations from the head office.

TRIMBLE CB450 CONTROL BOX

The CCSFlex uses the Trimble CB450 Control Box to guide the operator to the target number of passes at the optimal temperature.
DEPENDABLE TECHNOLOGY. DEPENDABLE SUPPORT.

Reliability is especially important in paving systems, because you lose money any time the process stops. Trimble components are built to withstand the heat, steam, tamping and vibration that are the norm on milling machines, pavers, and compactors. And while system durability prevents downtime, Trimble’s extensive SITECH® dealer network ensures that training and support are always close at hand.

SITECH is the leading distribution network for the most reliable, rugged and complete portfolio of construction technology systems available to the heavy and highway contractor. The experienced construction professionals at your SITECH dealership will advise you on the right technology for your job and provide you with local customer service, personalized training and technical support.

With the addition of Trimble site-wide solutions to your heavy and highway projects, you’re in a stronger, more competitive position. You’ll experience new levels of productivity that will help you win the bid and be profitable, project after project.
Recommended Technology for Your Application

<table>
<thead>
<tr>
<th>Application Description</th>
<th>Examples</th>
<th>Milling</th>
<th>Asphalt Paving</th>
<th>AsphalT Compaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road jobs with an accurate reference surface or curb</td>
<td>Roads, parking lots</td>
<td>Optional</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Road jobs with an accurate reference surface or curb and a stringent smoothness spec</td>
<td>Highways, airports</td>
<td>Optional</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Asphalt paving without stringlines or accurate reference surface but with stringent elevation, cross slope and/or smoothness specs</td>
<td>Airports, roller compacted concrete paving, base material paving, asphaltic base for concrete roads</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended, Optional</td>
</tr>
<tr>
<td>Asphalt paving with frequent cross slope changes</td>
<td>Highway exits and curves, parking lots, sports surfaces</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

System Accuracies for Each Technology Employed

Horizontal Accuracy
- **Trimble Total Station**
 - Accuracy at 100 m is 3mm (0.01 ft) Horizontal and 1mm (0.003 ft) Vertical
- **Trimble Precision GNSS**
 - Accuracy is 8mm (0.03 ft) Horizontal and 15 mm (0.05 ft) Vertical
- **Trimble Location RTK**
 - Accuracy is 8 mm (0.03 ft) Horizontal and 100mm (0.33 ft) Vertical
- **Satellite Based Augmentation System (SBAS)**
 - Accuracy is approximately 0.5m (1.7 ft) in both the Vertical and Horizontal

Vertical Accuracy
- **Trimble Total Station**
 - Accuracy at 100 m is 3mm (0.01 ft) Horizontal and 1mm (0.003 ft) Vertical
- **Trimble Precision GNSS**
 - Accuracy is 8mm (0.03 ft) Horizontal and 15 mm (0.05 ft) Vertical
- **Trimble Location RTK**
 - Accuracy is 8 mm (0.03 ft) Horizontal and 100mm (0.33 ft) Vertical
- **Satellite Based Augmentation System (SBAS)**
 - Accuracy is approximately 0.5m (1.7 ft) in both the Vertical and Horizontal
TRIMBLE: THE CONSTRUCTION TECHNOLOGY STANDARD

Trimble provides the tools and support to let you integrate planning, design, site positioning, machine control and asset management information throughout the construction life cycle for more efficient operations and higher profits. Visit your SITECH® technology dealer today to learn how easy it is to utilize technology that makes significant improvements in project workflow, dramatically increases your production, improves your accuracy and lowers your operating costs.